20 research outputs found

    Hand Motion Detection in fNIRS Neuroimaging Data

    Get PDF
    As the number of people diagnosed with movement disorders is increasing, it becomes vital to design techniques that allow the better understanding of human brain in naturalistic settings. There are many brain imaging methods such as fMRI, SPECT, and MEG that provide the functional information of the brain. However, these techniques have some limitations including immobility, cost, and motion artifacts. One of the most emerging portable brain scanners available today is functional near-infrared spectroscopy (fNIRS). In this study, we have conducted fNIRS neuroimaging of seven healthy subjects while they were performing wrist tasks such as flipping their hand with the periods of rest (no movement). Different models of support vector machine is applied to these fNIRS neuroimaging data and the results show that we could classify the action and rest periods with the accuracy of over 80% for the fNIRS data of individual participants. Our results are promising and suggest that the presented classification method for fNIRS could further be applied to real-time applications such as brain computer interfacing (BCI), and into the future steps of this research to record brain activity from fNIRS and EEG, and fuse them with the body motion sensors to correlate the activities

    Bivariate Autoregressive State-Space Modeling of Psychophysiological Time Series Data

    Get PDF
    Heart rate (HR) and electrodermal activity (EDA) are often used as physiological measures of psychological arousal in various neuropsychology experiments. In this exploratory study, we analyze HR and EDA data collected from four participants, each with a history of suicidal tendencies, during a cognitive task known as the Paced Auditory Serial Addition Test (PASAT). A central aim of this investigation is to guide future research by assessing heterogeneity in the population of individuals with suicidal tendencies. Using a state-space modeling approach to time series analysis, we evaluate the effect of an exogenous input, i.e., the stimulus presentation rate which was increased systematically during the experimental task. Participants differed in several parameters characterizing the way in which psychological arousal was experienced during the task. Increasing the stimulus presentation rate was associated with an increase in EDA in participants 2 and 4. The effect on HR was positive for participant 2 and negative for participants 3 and 4. We discuss future directions in light of the heterogeneity in the population indicated by these findings

    A Newcomer\u27s Guide to Functional Near Infrared Spectroscopy Experiments

    Get PDF
    This review presents a practical primer for functional near-infrared spectroscopy (fNIRS) with respect to technology, experimentation, and analysis software. Its purpose is to jump-start interested practitioners considering utilizing a non-invasive, versatile, nevertheless challenging window into the brain using optical methods. We briefly recapitulate relevant anatomical and optical foundations and give a short historical overview. We describe competing types of illumination (trans-illumination, reflectance, and differential reflectance) and data collection methods (continuous wave, time domain and frequency domain). Basic components (light sources, detection, and recording components) of fNIRS systems are presented. Advantages and limitations of fNIRS techniques are offered, followed by a list of very practical recommendations for its use. A variety of experimental and clinical studies with fNIRS are sampled, shedding light on many brain-related ailments. Finally, we describe and discuss a number of freely available analysis and presentation packages suited for data analysis. In conclusion, we recommend fNIRS due to its ever-growing body of clinical applications, state-of-the-art neuroimaging technique and manageable hardware requirements. It can be safely concluded that fNIRS adds a new arrow to the quiver of neuro-medical examinations due to both its great versatility and limited costs

    EchoWear: Smartwatch Technology for Voice and Speech Treatments of Patients with Parkinson’s Disease

    Get PDF
    About 90 percent of people with Parkinson\u27s disease (PD) experience decreased functional communication due to the presence of voice and speech disorders associated with dysarthria that can be characterized by monotony of pitch (or fundamental frequency), reduced loudness, irregular rate of speech, imprecise consonants, and changes in voice quality. Speech-language pathologists (SLPs) work with patients with PD to improve speech intelligibility using various intensive in-clinic speech treatments. SLPs also prescribe home exercises to enhance generalization of speech strategies outside of the treatment room. Even though speech therapies are found to be highly effective in improving vocal loudness and speech quality, patients with PD find it difficult to follow the prescribed exercise regimes outside the clinic and to continue exercises once the treatment is completed. SLPs need techniques to monitor compliance and accuracy of their patients\u27 exercises at home and in ecologically valid communication situations. We have designed EchoWear, a smartwatch-based system, to remotely monitor speech and voice exercises as prescribed by SLPs. We conducted a study of 6 individuals; three with PD and three healthy controls. To assess the performance of EchoWear technology compared with high-quality audio equipment obtained in a speech laboratory. Our preliminary analysis shows promising outcomes for using EchoWear in speech therapies for people with PD

    Emotional reactivity monitoring using electrodermal activity analysis in individuals with suicidal behaviors

    Get PDF
    Suicide, considered as one of the leading causes of death, has not been given enough attention in order to reduce it\u27s rate. The problem addressed in this paper is the analysis of the relation between an extra stimulus and physiological data\u27s responses. In order to record the physiological data set from multiple subjects over many weeks, we used an acoustic startle during a Paced Auditory Serial Addition Task (PASAT) test that spontaneously leads subjects to real emotional reactivity, without any deliberate laboratory setting. Crucially, we show that, by inducing anxiety during the test, changes appear in Electrodermal activity, Electrocardiogram, Heart Rate and Respiration Rate. A wide range of physiological features from various analysis domains, including modeling, time/frequency analysis, an algorithm and etc., is proposed in order to find the best emotional reactivity feature to correlate them with emotional states which can be considered as a suicide factor. More specifically, this paper is focused on the EDA data analysis. Experimental results highlight that all cited techniques perform well and we achieved a high resolution of tonic and phasic components which allow us to measure the latency, onsets and amplitudes of EDA responses to a stimulus. This paper follows the association of recommendations for advancement of health care instruments

    Fog Computing in Medical Internet-of-Things: Architecture, Implementation, and Applications

    Full text link
    In the era when the market segment of Internet of Things (IoT) tops the chart in various business reports, it is apparently envisioned that the field of medicine expects to gain a large benefit from the explosion of wearables and internet-connected sensors that surround us to acquire and communicate unprecedented data on symptoms, medication, food intake, and daily-life activities impacting one's health and wellness. However, IoT-driven healthcare would have to overcome many barriers, such as: 1) There is an increasing demand for data storage on cloud servers where the analysis of the medical big data becomes increasingly complex, 2) The data, when communicated, are vulnerable to security and privacy issues, 3) The communication of the continuously collected data is not only costly but also energy hungry, 4) Operating and maintaining the sensors directly from the cloud servers are non-trial tasks. This book chapter defined Fog Computing in the context of medical IoT. Conceptually, Fog Computing is a service-oriented intermediate layer in IoT, providing the interfaces between the sensors and cloud servers for facilitating connectivity, data transfer, and queryable local database. The centerpiece of Fog computing is a low-power, intelligent, wireless, embedded computing node that carries out signal conditioning and data analytics on raw data collected from wearables or other medical sensors and offers efficient means to serve telehealth interventions. We implemented and tested an fog computing system using the Intel Edison and Raspberry Pi that allows acquisition, computing, storage and communication of the various medical data such as pathological speech data of individuals with speech disorders, Phonocardiogram (PCG) signal for heart rate estimation, and Electrocardiogram (ECG)-based Q, R, S detection.Comment: 29 pages, 30 figures, 5 tables. Keywords: Big Data, Body Area Network, Body Sensor Network, Edge Computing, Fog Computing, Medical Cyberphysical Systems, Medical Internet-of-Things, Telecare, Tele-treatment, Wearable Devices, Chapter in Handbook of Large-Scale Distributed Computing in Smart Healthcare (2017), Springe

    Supplemental Oxygen therapy and Non-Invasive Ventilation in Corona Virus Disease (COVID-19)

    Get PDF
    The world has experienced a pandemic due to novel Severe Acute Respiratory Disease Corona Virus-2 (SARS-CoV2) since December 2019. The clinical spectrum of the disease known as Coronavirus Disease 2019 (COVID-19) is so much wide, starting from an asymptomatic state to paucisymptomatic clinical presentation, pneumonia, respiratory failure to even death. Supplemental oxygen therapy is essential in managing COVID-19. Also, there is sparse evidence regarding use of non-invasive ventilation (NIV) in pandemics like SARS-CoV-2. This study reviews the currently available methods for respiratory support in COVID-19 with a discussion about using these modalieties in the COVID-19 pandemic
    corecore